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while the maximum height of the curve above the x-axis is

H=1.

Can we do better, that is, find a curve with a smaller value of E?

Two Circular Arcs

We try a combination of two circular arcs for the portion of the curve in the first quadrant, as shown in
Figure 2. (The other half of the curve is obtained by reflection about the )-axis.) Let the first arc have radius
R and angular extend 8. while the remaining portion has radius rand angular extend (w/2 -0). Note that the
parameters r. R. and 8 are not independent, since one can obtain from the diagram

(R - r) cos 0 = (R- 1).

The arc length of the right-hand portion of the curve becomes

S = OR + (w/2 -9) r,

while the energy is E + / +

Minimizing E, subject to the given constraint, using the method of Lagrangian multipliers, leads to the set of
equations

8+ (w2-)(1 -sec 0) = 0,

._ + (v/2 -8 ) (R - r) ta = O ,I
R • f Ree---- =0, Actession r -

(R-r)cos8 - (R-1) = 0. P'TIS GRA&I [.
D'"IC TAB [

The second of these can be simplified into Unannounced
Justif ication -_1

r = R (w/2 -0) tan 0,
By-

which, when applied to the first equation, yields Distribution/

Availability Codes
0 (w/2-0)(1 + see)= 1. Avail and/or

Dist j Special

Solving this numerically we obtain 8 = 0.412868765...

We can also show that R = (1-cos) +
[(I- cs 0 +(w/2 -9) sin 01'

sothO R = 1.8227161... : u : ,'..,, A
I Appov, totpub~IP ,!

and r= 0.92452847... Apppiovd ifor ublic

I][11u io I|UI Fl
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Finally, since here H = r + (R - r) sin 8

we see that H = 1.2849161...

and E = 1.4789649... 0.94153834*(m/2),

while S = 1.8230795... 1.1606084*(9/2).

The energy in this curve is only 94.15% of that in the semicircle, so we can do better.

The Best Ellipse

The two-arc solution suggests that the optimum curve is elongated and has radius of curvature smaller than
one at its peak, and larger than one near the x-axis. Is it an ellipse? The equation of the ellipse [pg. 411, 13:
pg. 72, 141 shown in Figure 3 is

(x/a)2 + (y/b)2 = 1,

or in parametric form, x a cos t, y = b sin t.

The eccentricity e is defined by the equation

= I - (a/b)2.

The arc length can be found as follows [pg. 26, 91,

s= fds=' r 7 + 2 d,

where . x and 5=
-di dt

Now, + 5 2 =a 2 sin2t + b2cosi

or, i +52 = b[I - e2 sin2 ].

So S = b f 2  / I- e2 sin 2t di = bE(e),

where E(e) is the complete elliptic integral of the second kind' [pg. 16, 9; pg. 833, 10; pg. 904, 11; pg. 589, 121.
(The elliptic integrals got their name from the fact that they first appeared in the mensuration of the ellipse.)
Finally, for a= 1,

1. Note that E denotes more than one thing in this paper. When the letter appears alone, it signifies the
i.,tegral of the square of the curvature, while it denotes the complete elliptic integral of the second kind when
is has one argument, as above.



S = E~e) / -

The curvature can be found as follows [pg. 553, 13, pg. 22, 141:

l + i 213/2 -[a' sinzi + b2 cosE/Ij3

Now E = fuc2 ds = fW/2 K' [12 + 112f

So E=~" A i
[ 0 1-e' sin '115/

The definite integral can be shown [using pg. 165, 111 to be equal to

[2 (e' + 1)Ee) _- e2 K(e)] / (3 e! 4),

where e2 +ei 2 =1

and K(e) is the complete elliptic integral of the first kind [pg. 16, 9; pg. 834, 10; pg. 904. 11; pg. 589, 121. So
finally when a= 1,

E = [2 (2-e 2) E(e) - (I1-e2) K(e) /3.VF

When we set e= 0 we obtain E= 'w/2, as we should, since the curve in this case is just a semicircle.

In order to find the best possible ellipsc we peed to differentiate the expression above with respect to e. Here
we need the following derivatives [pg. 21, 9; pg. 907, 111:

M k) El Ek) - K()
dk - k

dK(k) _~)-VKk

dk k Vk

where k' + 0' = I.

The eccentricity of the optimum ellipse satisfies

A ~e)[14 4 - 5e' + 3) = K(e)[J2e4 - 5e' + 31

Solving this equatio~n numerically leads to

e = 0.6530018...

with H= b/o I/ V -FF 1.3203823...
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E = 1.4674751... 0.93422368 *(w/2),

S = 1.8311202... 1.1657273 * (w/2).

The maximum and minimum radii of curvature are

ra x = b
2/a = 1.7434096... and rin = a2/b = 0.75735636...

This curve has an energy which is only 93.42% of that of the semicircle. We have found a curve which has a
smaller %alue of E than our two-arc solution.

Can we do better still?

Multi-arc Approximation

Consider a smooth curve constncted out of n circular arcs (see Figure 4). Let the radius of curvature of the
piece turning through the angle from a1 to a be r1 . We note that the total arc length, S', and the integral
of the square of the curvature, E', are given by

n-I n-1

S': I (ai 1 - ad)ri = r,-,a. +  (r- 1I - ri) a1,1-0 f-i

n-(a - a,) a n-I
-1+1 =tr _ _

E'=I r r~ 1r1-0 r1 rn-I rt-l t -

where a0=O and an = w/2. We also have to compute the width, 14", and height, H',

14" r r(cosaI -cosal) = r0Cosa,, - (rt-- rt)cosat,

H'= r,(sinaj, 1 - sin a i) = rn. sina n + (rt_ 1 - ri)sina t.1-0 -

To solve our original problem we need to scale whatever curve we obtain so that its overall width equals 2
instead of 2 W'. The scaled values are as follows:

H = H'IW',

E= E' W',

S= S'/W'.

Note that the integral of the square of the curvature is decreased when we make the curve larger without
changing its shape.
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Optimum Multi-arc Approximation

Our task now is clear: We have to minimize E 'W' by suitable choices of the parameters r, (for i=0,1 ... n -1)
and a (for i= 1,2 ... n -1). Actually, wc can pick one of the radii arbitrarily, r0 for example, since the whole
curve will simply be scaled accordingly. The minimization looks difficult at frn°:, when one considers the
complexity of the product E'W' and its derivatives. It appears necessary to resot o numerical techniques to
solve for the 2(n -1) parameters.

Fortunately this is not the case, for if
ddx(EW) = 0,

then, by the rule for the differentiation of a product,

dW' dE' W'IE'
d- dX,

for arbitrary x (i. e. r and a1 *). Since the right-hand side is independent of x, it must equal a (positive)
constant, 2 say. Thus we find that

dW'l dE' C2d- for i= L2... n -1,

dW' dE' =
- 2 for i = 0,1 ... n -1.dr /
dr dr1

We need the following derivatives now,

dE' [ - .. ] for i =1,2 ... n--1,"
dat !"ri,

dE' (a1+1 - )or i = 0,1 ... n -1,
dr,-

dW'
d - (r 1 - ri) sin a, for i = 1,2 ... n-1,
dW'

dW' = (cosa - cos a,) for i = 0,1 ... n -1.

Using these derivatives in the equations above we obtain

r r 1 sin a, = c2 for i = 1,2 ... n-1,

cos a|+ -cosa =
r, _Z = =c2 for i= 0,1 ..n -1.
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It is easy to verify that in the case that n=2, we obtain the same equations as before, provided we introduce

the additional constraint

W' = ro - (ro - r)cosa 1 = 1.

Note that, if c is known, a simple procedure will give us all of the parameters. Let r0 = 1, say, then the second

equation can be used to find a,. (This non-linear equation has to be solved numerically.) '[he first equation

then allows one to solve for r1. Knowing rV, the second equation allows one to find a 2, and so on. If the

value of c is correct, the process will terminate with an = vr/2. The correct solution can be found by searching

for the appropriate value of c. This is very much simpler than a direct search on the 2(n -1) parameters.

Sonic Helpful Relationships

A number of interesting observations can be made now about the multi-arc solution. First of all, the "energy"

8E' in an individual arc is directly proportional to the projection 6 W' of this arc on the x-axis, since

SE'= ( - i)

r't i

and 8 W' = ri (cos ai - cosa+I).

So we have E'/W' = 1/c ,

and we already know, of course, that E'/W' = 1/c .

Next. .otice that the projection, OH'. of the (i+ 1)-th arc on the y-axis equals

SH ' = r (sina + z - sin a1 ) = c2 ["--] ---

r+1 r 1-1

The height at the tip of the i-th arc then is

H' C2[!+ fl for i = 1,2 ... n -1,
Sri-1 0

since H 1 = r0 sin a, = c2 /rr

Also H' c2= 1 - + L] 1
rn- 0"

Three, Four and Five Arcs

The optimum solution for three arcs gives
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H = 1.399926...

E = 1.456879... - 0.9274780*(w/2)

S = 1.929128... - 1.228121"(w/2),

and shows us that the ellipse is not optimal after all. For four arcs we find

H = 1.462089...

E = 1.448212... - 0.9219604*(w/2)

S = 1.987501... - 1.265282*(w/2),

and for five arcs we get

H = 1.500993...

E = 1.443930... - 0.9192345*(w/2) t
S = 2.024437... ' 1.288796*(w/2).

These solutions are shown in Figure 5. We see that E is dropping more and more slowly, while S is growing,
as is H.

For five arcs, the parameters for the unscaled curve (r0 = 1), are as follows

= 0.500258... a1 = 0.078707...

r2 = 0.334497... a 2 = 0.237276...

r3 = 0.253163... a 3 = 0.483045...

r4 = 0.207337... a 4 = 0.847067...

r = 0.189705... a5 = 1.57079...

Perhaps we can guess the true minimum energy curve from the numerical data obtained so far The
parameters seem to roughly fit into a pattern like

r= _j) . and a,

- (i+-1) 2 n(n+l)"

In thiscase (a1~1 - a) = n(n+1)'

so the arc lengthsare 8S' = r - a1 ) = n(n+)"
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That is, the arc, all have the same length, and curs ature increases linearly along the curve.

Now we could sum the series flr arc length and energy (easy) and for height and ,idth (hard). Ihen we
would discos er that h-'= [:' 1 decreases with n, and we could find its limit as the number of arcs tends to
infinit. Instead. we proceed directN to the curxc obtained in the limiting process.

The Cornu Spiral

The curve which has cur%atire xarying linearly with arc-length is called the Cornu Spiral (or Fuler's Spiral)
[pg. 190, 2; pg. 190. 14]. It can be defined using die two Fresnel integrals Lpg. 820. 10; pg. 930, 11; pg. 300,
121.

C(s) CS Cs 2

fo=
'(s) = sin ( At)dt.

lfwelet x a C(s) and y = S(s).

we obtain a curve starting at the origin and curling upwards in the first quadrant. We note that

x = cos (Is2) and 5 sin ',

is sin 2s ) and J s )

This %erifies that s is the arc-length along this curve, since

i2 +Y = 1,

and that the curvature varies linearly with arc length, since

'The part of the spiral of interest to us here extends to the right up to the point where the curve becomes
vertical, that is, i= 0. This is the point where s= I and

x = C(1) = 0.7798934... and ,= S(1) = 0.4382591...

The energy in this portion of the spiral is just

E=f'K 2dS = f'(w#S)2ds =-'3

We now build a smooth curse connecting the two points (- 1,0) and (+ 1,0) by scaling, rotating. and shifting
this tendril as shown in Figure 6. In the right hand quadrant we use

x= I and Qs
SO) s(1

(The rest of the curve is obtained by reflection about the y-axis.)
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We then find that

H = ('(I)/S(1) = 1.779525...

E = (V 2/3) S(1) = 1.441814... z 0.9178877*(ir/2),

S = 1/S(1) = 2.281755... Z 1.452 6 10"(wr/2).

The curve constructed out of a portion of the Cornu Spiral only has 91.78% of the energy of the semicircle
and is thus the best curve so far.

Rut, can we do better still?

Six Arcs and More

unfortunately, the Cornu Spiral is not optimal either, as one sees by considering the best six. ,rc solution for

which

F = 1.441508... Z 0.9176931*(w/2).

For eight arcs, . 8 Z 0.9 160 9 7 "(wr/2),

for sixteen arcs, E16 Z 0.9145 3 2 "(w/2),

for thirty-two arcs, E3 2 = 0.91 42 8 5 *(wr/ 2),

and for sixty-four E Z 0.913953*(w/2).

These solutions are shown in Figure 7.

It seems that the total energy is approaching some limit, near 91.39% of that in the semicircle. Some of these
results are summarized in Tables I and I1.

TABLE I

n E/(r/2) S/(,r/2) H

1 1.0 1.0 1.0 1.0
2 .9415383 1.160608 1.284916 .9245284
3 .9274780 1.228121 1.399925 .8950140
4 .9219604 1.265282 1.462089 .8794932
5 .9192345 1.288796 1.500993 .8700129
6 .9176896 1.305012 1.527622 .8636634
7 .9167300 1.316870 1.546987 .8591353
8 .9160932 1.325918 1.561701 .8557555

Zf.Zfl-A.- , -,S.-...
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FABLE !1

E /(,n/2) S/(w/2) H rml"

16 .9144692 1.358673 1.614492 .8442353

32 .9140406 1.375704 1.641625 .8389106
64 .9139305 1.384403 1.655392 .836516
128 .9139025 1.388789 1.662308 .835461
256 .9138955 1.390998 1.665786 .834998
512 .9138938 1.392110 1.667534 .83473
1024 .9138934 1.392671 1.668417 .83467
2048 .9138932 1.392984 1.668908 .83463

We can get better and better approximations to the optimum curve, provided we also carry out computations
with more and more significant figures. Note, by the v ay, that while F varies little once n is reasonably large.
S and H continue to show appreciable changes. '[his is a reflection of the fact that some distortions of the
optimum curve produce only small changes in the total energy.

Some Observations About the Optimum Curve

The multi-arc approximation tends to the optimum curve in the limit as n tends to infinity. So we can learn
some properties of the optimum curve from what we have so far. First of all,

from rr _ sin a= C2

we get C2K 2 = cos'.

where K is the curvature and k is the angle which the curve makes with the x-axis. The constant c only affects
the size of the curve, not its shape. We cannot determine it at this point.

From - cos - - =c2,

' i+l - a

w e g et ,z S ill [( a + -a , )/ 2 1
weget +1 sin [(a1 +1 + a )/21 =C ,

S(a +1 - a , )12  +

which in the limit again leads to c2K2 = cos 4,.
dE

We also obtain TE = 1/c2dx

SE'
from -w = I/c 2 .

Now E = f2 ds = f2 I + (dy/dx) 2 dx.
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so K2 -V/I + (dy/dx)2  1/c2.

Further, since, A tan 4,dx=

we again obtain, c2 .2 = cos 4,

Each of these approaches leads us to the same simple equation for the curve.

Finally, from H' c2[1 + l "-[L -o]
r i  ri-1 0

we get in the limit - K = y/2c2 .

That is, the curvature varies linearly along the axis of symmetry of the optimal curve. Substituting for 1 we
also derive

cos ' = (y/2c2.

Note that since the optimal curve bends downwards, its second derivative is negative. This is why, by the
usual sign conventions, curvature too is negative. Thus we will use the equation

-CK= ,'cos7

between 4,= +7r/2 at the left end and 4 w -/'at the right end of thecurve.

Differential Equation for the Curve

The curvature is the rate of turning as one goes along the curve, that is,

K ix ds

ds '

and consequently, s =-c f - .

The substitution cos 4 = leads to a denominator of the form

while the substitution cos j = 2 leads to a denominator of the form

j 1  4.

In each case we are dealing with the integral of a rational function of j and the square root of a cubic or
quartic polynomial in J. This means that the answer can be expressed as an elliptic integral [pg. 16, 9, pg. 833,
10; pg. 904, 11 - pg. 589, 121.
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We can actually just look up the result directly [using pg. 154, 11: also see Appendix] and find the solution

s = '/ c F(cos " I Vcos4', 1/- 2),

where F is the incomplete elliptic integral of the first kind.1 I Ibe constant of integration has been chosen so
that ' = 0 corresponds to s= 0. The result came out positive because the integration goes from 4 =0 to
negative values of '. For the half of the optimal curve in the negative quadrant, a minus sign must be
attached. Some readers may notice the similarity of the solution found above, to the equation for a pendulum
[pg. 28, 9], swinging from - ff/ 2 to +wr/2 (where ' is the angle from the vertical, while s corresponds to the
time).

We now have the equation of the curve sought after in Whewell form [pg. 4, 14], namely arc length as a
function of tangential angle. We can immediately also rewrite it in Cesfro forim [pg. 4, 14], namely as a
relation between arc length and curvature:

s = 1V2 c F(cos-(- cK), 1/1VI).

Both of the forms given above are intrinsic equations for the curve Lg. 40, 2].

We can easily compute the length of the curve from an initial point at the top, where 4 = 0, to the point on the

x-axis, where v= -i/ 2 , since

F(w/2, 1/v/2) = K(1/-2)

where K is the complete elliptic integral of the first kind. Now [pg. 909, 111,

K(l/v
2r) = K(sin(v/4))= 'f dI t r 1/4 2

-o (44 )

where r is the gamma function [pg. 821, 10: pg. 933, 11, pg. 255, 121. There is an infinite product [pg. 938, 11]
for r(1/4)'

oo 14 k _ - )2|(4k + 1)2 _ 11
"(1/4)4 - 16,12 I-I (4 ik 1)2i) 2 -1]

k-i (4k + 1(4k- 1) -11

which gives us the numerical value

r(1/4) = 3.6256099082...

The arc length is finally, S = 4 2 "

1. Note that some authors [pg. 833, 101 list the arguments of the incomplete elliptic functions in the reverse
order of that shown here.
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Cartesian Form of the Solution

For many purposes it is more convenient to express the solution as a relationship between the x and y
coordinates.

We note that !X = cos 4, and = sin4',

and remember that -A = Jrc .

By the chain-rule for differentiation A = d / -s = -,r ,
a d ds

and A s =  -/A csin /vcos '.

The latter equation is easy to integrate using the substitution z = cos 4'.

y =Cfdz =-2c F,

so that (yl2c) = / cos 4'

where the constant of integration was chosen so that )=0 when 4= - w/2. The reader may also recall that in
the previous section this result was found directly as the limit of height of the multi-arc approximation.

The integral for x is a little harder. x = c f V'co-s4 d4,.

This can be expressed as the difference of two incomplete elliptic integrals [using pg. 156, 11. also see
Appendix],1

x =/'c( 2 E (cos 1 vros 4', 1/Y') - F(cos- 1 vcos, v/v'Y),

where the constant of integration was chosen so that x = 0 when 4=0.2 Finally then,

x = V'c I 2 E(cos-1 '/2c), I/ V2) - F(cos-1 (y/2c), I/2)J.

An alternate way to obtain the same result is to note that x and y are related by the differential equation

dx - (y/2C) 4

1. Note that E denotes more than one thing in this paper. When the letter appears with one argument it
signifies the complete elliptic integral of the second kind, while it denotes the incomplete elliptic integral of
the second kind when is has two argument, as here.
2. Note again that some authors jg. 833, 101 list the arguments of the incomplete elliptic functions in the
reverse order of that shown here.
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since tan
x CosZ

In any case, for y = 0

x .I / VI) - MI / V)1

where K and F are the complete elliptic integrals of the first and second kind respectively.

Using I cgendre's identity jpg. 25, 9- pg. 836, 10: pg. 90711; pg. 591, 121

IF'()(k) # 1*(k') K(k) - k(k)K(k') - w/2.

where k' + 0C2 = 1.

get [pg. 25, 91 2 hI V12") = 12 + A(/') I/ K(I / j).

so that 12 LI 1/ 11) - (1//-) (/2) / K(1/42).

So the width of the curve is 1 (2v)3

and, if we want W = 1, we must h we

F2 W )7 0.8346268416...(2w) J '

The height of the curve then comes to

H = 2c z 669253683...

(compare to the two-arc approximation). 'Ihc minimum radius of cur~ature, the in.Mer.- ol ihc maximum
curvature, is

r .__, c 0.8346268416...
in -(11/2c)

'Ihus a circle tangent to the curve at the top is also tangent to the x-axis.

The arc length comes to S = i2 (2w)

or S = 2.188439615... 1.393203929*(*/2).

Finally, fron d = I 2 ,

we get E =lCA .

and so E = XL/ = 1.435540022... := 0.9138931023-(w/2).

Note that E S = w. The curve of least energy is shown in Figure 8.
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Extension of the Curve

So far we have considered a finite segment of the optimum curve, extending from a point of zero curvature
(where 4 - w/2) through a point of maximum cursature (where 4' = 0) to a second point of zero curvature
(where 4 + w/2). Can the cur e be extended beyond these points!

It is clear that 4 must remain in the range [- w/2, + w121 so that the square root of its cosine remains real.
1o continue the curve then. the sign of the curvature must change, we must choose the other sign for the

square-root. The new segment we obtain has the same shape, of course, as the segment we have found
already, just inverted.

l'he sxgment we have used so far is just a piece of the infinite periodic wave shown in Figure 9. In Figure 10
we see seseral curses %hich correspond to stationar) values of the integral and pass through the specified
points with the desired orientation. Ibe one on the left is the one which corresponds to a global minimum of
the energy l'he curcs containing n half-cycles have an energy n2 as, large as the one containing a single
half-cycle.

The curve of least energy passing through two given points with specified orientation is just a portion of the
general cure, suitably translated, rotated, and scaled. 'Tis is illustrated in Figure 11. The rotated, translated
and scaled curves firm a fiur parameter family.

Variational .pproach

We are trying to find the curve for which E f K2 d2

is minimal. Ibis integral can also be written in the form

F f I + (U")2]1 2 d.,

or, since K

f= ( dx.

'his is of the form fF(x. y., .") dx,

and the calculus of variation Jpg. 119, 15: pg. 190, 16; pg. 198. 17) teaches us that for a stationMry value of the
inwgraL

where F F, and F , are the partial derivatives of F with respect to y, y'. and y" respectively:
Y, Y, Y
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FY 0,
F =O

' 11 -I + (.01712 '

2

Since FY 0, A~F, ~~~O-r[F F , 0

and integrating, we get - Y +d Fy' A.

where A is an arbitrary constant. In the above we have closely followed the approach taken by Mehlum
Ipgs. 157&189. 2; pg. 43, 61.

Also d Fy =I + -i)2 ]j6 2  [1 + (y')217/'

so we get + A') 1

Now .. ... ' '
Now ~7 dx /dx-

so y

In addition d. 2 ,) ,

d adYand ',5 1 p )+s/ =  - i 2i 771m .

Using these results in de equation above,

d (v") 2

Til + (Y')2 A5/2

and, integrating, we get (' ) = A.' + 8.

where B is a second arbitrary constant.

Returning for a moment to the integral of the square of curvature, we see that



19-

fKds= f Ay'+Bjdx= f A dy+ fBdx

= A(), - yo) + B(x, - xo)

for a curve which starts at (xo, ,o) and ends at (x,. y,).

Now = 2 .775(o I + (y)25/2 =  r + ,

so K2  I + V) Ay' + B.

Also, 1, ./ &x n/
dx ds ds

so K, w2 1 + i) = A (U/i) + B,

or .,, 2 = Aj +BI.*

since . 2 + 9 = 1.

Now if tan* -= dr'

then i= cos4 and =sin,.

Remembering that K = -,

we finally see that d s Asn + Bcos-.ds =

Letting A - lie2 cos p and B= - 1/c sin 9)

we get c = 'sin (, -9,)
d.s

'he scale of the curve is dependent on the parameter c, while the rotation in the xyplane is dependent on the
parameter 9.

Altogether we have a four pa rameter family of curves, since we can also choose an initial point and a direction
for the curve. Conversely, we can find a single curve out of this family which passes through any two points
with orientation specified at both points.

By the way, if we let the line from the initial point (x 0,y0 ) to the final point (x.y,) have length rand direction

. then

f e2ds = (c 2) sin ( - ).

(r/c z ~sA
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Sunwi

We have found the simple equation

+c = V cos( -9,),

and solved it to find the equation of the curve of least energy in Whewell form

s = F ±cF(cos 1 V/cos ('- q ), 1/f').

We also developed a differential equation for the curve in Cartesian coordinates aligned with the axis of
symmetry,

_y I / - (yl2C)4

dx - (y/2c)z

The solution of this equation, for given initial conditions, led to

x = V'rc[ 2 E(cos'y/2c), I/V2) - F(cos1'(y/2c), 1/12)].

We considered the curve of least energy connecting the point (- 1,0) to the point (+ 1,0) with vertical initial
and final orientations. 'Ihis cur~e has minimum radius of curvature

C = r(1/-
(2,w)3f2

rises to a height H = 2c.

has arc length s 2 (2" )2 (2sw)"

and energy 2S ,
r(1/4)

or about 91.39% of that of the simple semicircle approximation.

We have also given a method for finding approximations, consisting of circular arcs, to the curve of least
energy.

Note that the curve found here is extensible [7) in the sense that if the least energy curve with orientation a at
A and orientation P8 at B passes through the point C with orientation y, then the segments from A to C and
from C to B are themselves least energy curves. ('rlis is not true of the two-arc approximation 18]). As a
result, such a curve can be computed by a simple, locally connected network.

We have not shown how to find the particular member of the four parameter family of curves which passes
through a specified pair of points with specified orientation. Presumably determining the axis of symmetry
of the curve would be a helpful first step in this direction. In practical applications the multi-arc
approximation method may be suitable in dealing with dh' problem. We have not discussed how one might
compute the curve of least energy passing through three or more points. Here there is no constraint on the
direction. but the curvature must be continuous. Nor have we touched upon the extension to curves and
surfaces in threc dimensions, a topic which Mehlum addresses [pg. 62, 61.
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Appendix

In this appendix we determine two integrals needed in the body of the paper.

To evaluate the integral f' d

we substitute 2 = cos 4,

and obtain 11 = - 2 f d'

Next, substituting t2 = -

we get '1 y v l C osv di

and since sin 1  1 - cos = cos 1 C Os4',

we finally get f4  
= F (Cos I cos 4/ N/7).

To evaluate the integral = /co - d0,S

we again substitute 2 = cos 4,

andobtain 1 2 f'c 's 7 4 .

12 1 + j2 _ 1 a l+ 1

Now joV 1.77 V I +- j2 -_ I _- , -7 ,.- -

The integral thus can be split into two parts, the second of which we have already evaluated.

To evaluate 1 - It - 2 f di

we substitute as before ,= - C2
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and obtain 1 -I11 = 2v(-2 f - Cos4' 1 ?/ t

andso 12 - 11 = 2- E(cos' V* ", I/V'I),

since sin-l1  -C1 s = Cos- /"COS'.

Finally then,

f o s 4 d4= [ 2 E (cos 1 V cos 4, 1/VI) - F(cos -' cos4,, I V7)J.

The corresponding definite integrals from 4=0 to = /2 can be expressed in terms of complete elliptic
integrals of the first and second kind [pg. 91, 9].
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Fitgtre i 1: Optimum ctirve pasmingtahro)ugh two given points w'ith given orientation. It is a memhcr oF'a four

parameter fam11l, of cur~es obtained 1y translating, rotating, and scaling the particular curve

pai,.sing through thc points ( - 1.0O) and ( + 1,0O) with vernical orientation.




